Géométrie en petite dimension. Feuille de T.D. n°1.

Exercice 1. — 1. Donner, dans chaque cas, l'intersection de tous les sousensembles de \mathbb{R}^2 proposés. Dire lesquels de ces ensembles sont des sousespaces vectoriels de \mathbb{R}^2 .

- $$\begin{split} &-\Delta = \{(x,y) \in \mathbb{R}^2 | 3x + 2y = 5\} \text{ et } d = \{(x,y) \in \mathbb{R}^2 | y = 0\}. \\ &-\Delta = \{(x,y) \in \mathbb{R}^2 | y = 5x + 2\} \text{ et } d = \{(x,y) \in \mathbb{R}^2 | x = 5y + 2\}. \\ &-\Delta = \{(x,y) \in \mathbb{R}^2 | y = 2x\} \text{ et } d = \{(x,y) \in \mathbb{R}^2 | 2y = 4x + 2\}. \\ &-\Delta = \{(x,y) \in \mathbb{R}^2 | y = 2x\} \text{ et } d = \{(x,y) \in \mathbb{R}^2 | 6y = 4x\}. \\ &-\Delta = \{(x,y) \in \mathbb{R}^2 | y = 2x\} \text{ et } d = \{(x,y) \in \mathbb{R}^2 | 6y = 4x\} \text{ et } \delta = \{(x,y) \in \mathbb{R}^2 | x + y = 0\}. \end{split}$$
- 2. Donner, dans chaque cas, l'intersection des sous-ensembles de \mathbb{R}^3 proposés. Dire lesquels de ces ensembles sont des sous-espaces vectoriels de \mathbb{R}^3 .
 - $-H = \{(x, y, z) \in \mathbb{R}^3 | 0 = 2y 4x + z\} \text{ et } G = \{(x, y, z) \in \mathbb{R}^3 | 1 = 2y 4x + z\}.$
 - $-H = \{(x, y, z) \in \mathbb{R}^3 | 0 = 2y 4x + z\} \text{ et } \delta := \{(x, y, z) \in \mathbb{R}^3 | 0 = z \text{ et } y = x\}.$
 - $-H = \{(x, y, z) \in \mathbb{R}^3 | 0 = 2y 4x + z\} \text{ et } \delta := \{(x, y, z) \in \mathbb{R}^3 | 0 = z \text{ et } y = 2x\}.$
 - $-H = \{(x,y,z) \in \mathbb{R}^3 | z = 2x\}$ et $G = \{(x,y,z) \in \mathbb{R}^3 | y = 3x\}$. Donner une paramétrisation de $H \cap G$.

Exercice 2. — Donner les matrices des applications linéaires suivantes dans les bases canoniques des espaces vectoriels correspondants. Décrire leurs images. Calculer leurs noyaux.

1.
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(x,y) \longmapsto 3x + 2y$$

2. $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ $(x, y, z) \longmapsto (3x + 2y, z)$

3.
$$h: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(x,y) \longmapsto (x,y,x+y)$$

4.
$$h: \mathbb{R}^3 \longrightarrow \mathbb{R}$$
$$(x, y, z) \longmapsto x + y - z$$

5.
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$(x,y) \longmapsto (x,x,x)$$

Exercice 3. — Soit

$$A := \frac{1}{9} \left(\begin{array}{cc} -25 & -68 \\ 26 & 61 \end{array} \right).$$

On considère l'application linéaire f dont la matrice dans la base canonique est donnée par A. Ecrire f en coordonnées. Donner la matrice de f dans la base (u) donnée par $u_1 = (2, -1)$ et $u_2 := (-17, 13)$.

Exercice 4. — 1. Montrer que le groupe $(\mathbb{C}, +)$ est muni d'une structure de \mathbb{R} -espace vectoriel.

2. On considère les applications

$$f_a: \quad \mathbb{C} \quad \longrightarrow \quad \mathbb{C}$$
$$\quad z \quad \longmapsto \quad az.$$

Montrer que, quel que soit $a \in \mathbb{C}$, f_a est un endomorphisme du \mathbb{R} -espace vectoriel \mathbb{C} .

- 3. Montrer que $\{f_a, a \neq 0\}$ muni de la loi \circ (composition des applications) est un groupe.
- 4. Donner les éléments f_a tels que $(f_a)^3 = Id_{\mathbb{C}}$ et écrire leur matrice dans la base (1, i).

Exercice 5. — 1. Donner tous les supplémentaires de $d = \{(x, y) \in \mathbb{R}^2 | y = 0\}$ dans \mathbb{R}^2 .

- 2. Donner tous les supplémentaires de $H = \{(x, y, z) \in \mathbb{R}^2 | z = 0\}$ dans \mathbb{R}^3 .
- 3. Donner tous les supplémentaires de $\delta=\{(x,y,z)\in\mathbb{R}^2|z=0 \text{ et } x+2z=0\}$ dans \mathbb{R}^3 .
- 4. Soient E_1 , E_2 , E_3 trois sous-espaces vectoriels de \mathbb{R}^2 tels que $E_1 \oplus E_2 \oplus E_3 = \mathbb{R}^2$, montrer que l'un des E_i est le sous-espace vectoriel nul $\{0\}$. Le résultat reste-t-il valide si on remplace \mathbb{R}^2 par \mathbb{R}^3 dans l'énoncé?
- 5. Les sous-espaces vectoriels de \mathbb{R}^3 , $H = \{(x, y, z) \in \mathbb{R}^3 | 0 = 2y 4x + z\}$ et $\delta := \{(x, y, z) \in \mathbb{R}^3 | 0 = z \text{ et } y = x\}$ sont ils en somme directe? sont-ils des sous-espaces supplémentaires?